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SOME W E A K L Y  N O N L I N E A R  A M P L I T U D E  E Q U A T I O N S  

D E S C R I B I N G  T H E  B E H A V I O R  OF A T H I N  L A Y E R  IN A T W O - P H A S E  F L O W  

OF VISCOUS H E A T - C O N D U C T I N G  LIQUIDS A L O N G  A C Y L I N D E R  

V. E. Zakhvatayev UDC 532.516:536.25 

1. I n t roduc t i on .  A weakly nonlinear stability of an interface of initially cylindrical shape has been 
studied in [1-3] for a two-phase laminar flow of immiscible viscous incompressible liquids along a hollow pipe. 
One of the phases (named the core) is separated from the surface of the pipe by a thin film layer of the 
second liquid. The character of stability for this class of two-phase flows is important for some natural and 
technological processes. Some possible areas of application are as follows. 

(1) Displacement of one liquid by another in capillaries (for example, upon washing out of oil from 
rock strata), when a part of the liquid phase with a stronger wettability of the capillary-channel surface 
remains on the walls in the form of thin films. It surrounds the other liquid which is in the center in the form 
of threads separated by the first-phase gaps [3]. In the central part of these regions, the motion resembles 
locally the laminar flow of a liquid core surrounded by a thin film. It is important to take into account the 
problem of stability of such idealized flows in analyzing the processes of displacement of liquids and their 
two-phase motion in capillaries, cylindrical channels, and in slots of porous media: film instability and decay 
can substantially slow down liquid flow [3]. 

(2) Organization of a thin "lubrication" layer in pipes to decrease energy losses in transfer of liquid 
products. 

(3) Realization of special flows of the above class to apply a thin coating to cylindrical surfaces. 
The use of the long-wave approximation of the boundary-layer theory is a productive method to 

investigate the weakly nonlinear stability of film flows. Using this and Stokes approximations, Frenkel et al. 
[1] have shown that when the dynamic viscosities of liquids are equal and some additional conditions are 
satisfied, the dynamics of perturbations in the thin layer does not depend on the evolution of fluctuations in 
the core, and the behavior of the interface is described by the Kuramoto--Sivashinskii equation: 

Tit + N~71z + UTlzz + STlzzz= = 0, (1.1) 

where 77 is the deviation of the boundary from the equilibrium state, r is time, z is the spatial variable, and 
the corresponding subscripts are used to denote partial derivatives. 

The influence of viscous stratification that can lead to conjugation of perturbations in the core and in 
the film has been investigated in [2]. This gives rise to the occurrence of an integral term in the amplitude 
equation (1.1) (in this case, the asymptotic problem in the core is constructed on the basis of a special 
approximation and is solved with the Fourier transform). 

In the present paper, on the basis of the approaches used in [1, 2], we consider a modification of the 
corresponding amplitude equations if thermodynamic effects are taken into account. 

2. Formula t ion  of the  P rob lem.  Let # and ~ be the radial and axial cylindrical coordinates. We 
consider the initial motion of two immiscible liquids flowing in the regions {# < b , - c r  < ~ < oo} and 
{b < § < h , - 0 0  < ~ < oo} inside a cylindrical surface S which is specified by the equation ~ = 5. Both 
liquids are considered viscous, heat-conducting, and incompressible. The motion is assumed to be rotationally 
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symmetric. The effect of gravity is not taken into account (which, for example, can be justified under certain 
conditions if the cylinder S is a fairly narrow capillary [4]). It is assumed that (a - b)/b - e ~'~ 1. 

In the general case, the interface F is given by the equation § = L(~}, {), and the liquids of the core and 
of the film occupy, respectively, the regions 121 = {§ < Z(~}, {)} and lq2 = {L(:}, ~ < § < a). In what follows, 
the region fll is called the core, and the area l12 is called the thin layer or film, and the quantities related to 
the regions are denoted by the subscripts 1 and 2, respectively. 

Let Ui and I~i be the radial and axial components of the velocity vector,/5i be the pressure, and (~i 
be the temperature of the liquid in the region fli (hereafter i = 1, 2). 

The following parameters are used in the problem: a is the coefficient of surface tension, which is 
assumed to be a linear function of temperature [a = a .  - ~e(E) - O.),  where ze > 0 is a constant], pi are the 
densities, ~i are the kinematic viscosities, ~i are the dynamic viscosities, Xi are the thermal diffusivities, ci 
are the specific heats, and ki = picixi are the thermal conductivities of the liquids. 

The basic flow, whose stability is investigated, is induced by a constant pressure gradient along the 
cylinder and has the form U0i = O, I?Voi = Ai~ 2 + Bi, Ooi = Kli§ 4 + K2i ln(, ~) + K3i, and P0iz = - F ,  
_~ = const > 0. The wall of S has a constant temperature E)s. 

We chose the following scale factors for the nondimensional problem: b for spatial variables, l~ = 
~ 0 1 ( 0 )  ---- Fb2(1 -b ( , 1 / , 2 ) ( a 2 b  2 - 1))/4,al for velocity, b/I)r for time, /5 = plier2 for pressure, and 0 = 
Os - O01(0) for temperature.  Below, the desired functions and variables are considered nondimensional (the 
superscript hat is omitted). In what follows, a/b = a and L/b = L. 

The motion in the regions is described by the Navier-Stokes, continuity, and thermal-conductivity 
equations (for simplicity, the subscripts are omitted): 

U, + VUr + WUz = - (p , /p)Pr  + (1/Re)(AU - (1/r2)U); (2.1) 

Wt + VWr + WWz = - (p l /p )Pz  + (1/Re)AW; (2.2) 

U~ + (1/r)U + W, = 0; (2.3) 

Ot + UO, + WO,  = (1/Pe)AO + 2Dis{U~ 2 + (1/r2)U 2 + W 2 + (W, + U~)2/2}. (2.4) 

Here A - -  0 2 / ( ~ r  2 + 02/Oz 2 + (1/r)O/Or. 
The boundary conditions have the form [5] 

f o r r = a  

U2=O,  W2=O,  0 2 = 0 8  f o r t = a ;  (2.5) 

for r = 0 all the quantities are bounded; 
for r = L(z, t) 

IV] = [ w ]  = [o] = 0; (2.6) 

-Re,[P] + 2(1 + L~)-X([MU~] - Lz[M(W~ + Uz)] + L2[MWz]) 

= ( W e +  M n ( 0 2 -  O , ) ) ( -1  + L L z z -  L2z)L-I(1 + L2)-3/2; (2.7) 

(1 + L2z)-l/2(2Lz[MUr] + (1 - L2)[M(Wr + U~)] - 2Lz[MWz]) = Mn(OrLz + O2z); (2.8) 

- -  ---- r2h-1/2lT]" -- U~L, - WrL~ + WzL2z); (2.9) 

U2 = L~ + W2L~, (2.10) 

where [(.)] -- (.)1 - (:)2, Rei = I)db/~i, Pei = I?Vb/xi, Disi = (vil~V)/(ci6b), We = a./(~ll~V), Mn = 
-ze6/(#l i )d) ,  Es = ~eW/kl, Mi = I~i/l~l, Qi = ki/kl ,  O. = O , / 6 ,  and Os = Os/O. From now on, m = M2 
and q = Q2. 

In view of the continuity of condition (2.6), the subscript 2 is introduced (if possible) on the right-hand 
sides of conditions (2.7)-(2.9) and also in (2.10). Conditions (2.7) and (2.8) express the stress balance at the 
interface, condition (2.9) implies equilibrium between the heat-flux jump at F and the variation in the internal 
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energy of this surface, which is associated with variation in the boundary area [5], and (2.10) is a kinematic 
condition. 

Note that there is a quantity Or(r = L) on the right-hand side of (2.8). Its value is a certain average 
between Olr( r  = L) and O2r(r = L) and depends on the concrete problem. A similar remark is also valid for 
the derivatives Ur(r = L) and W , ( r  = L) on the right-hand side of (2.9). 

The initial flow, whose stability is studied here, is described by the following solution of problem 
(2.1)-(2.10): 

L = 1, U0i - 0, W0: = 1 - mr2/ (a  2 + m - 1), W02 = (a 2 - r2)/(a 2 + m - 1), 

Poiz = _/~,~//5 = const, O0i = Kl i r  4 + K2i In (r) + K3i, 
(2.11) 

KI ,  = q m / D ,  K2: = 0, Ka: = Os - 1, K12 = 1/D,  /(22 = 4 ( m -  1) /D,  

/(32 = OS - / ( ' 1 2  a4 - K22 In (a) (D = a 4 - 1 + qm + 4(m - 1) In (a)). 

We denote the small nondimensional width of the film by ~ (~ - a - 1 << 1). 
3. E s t i m a t i o n  o f  t h e  O r d e r s  of  P e r t u r b a t i o n s .  We assume for the perturbed motion that Ui = 

U0i + ui, Wi = W0i + wi, Pi = Poi + pi, Oi = O0i + Oi, and L = 1 + I. 
Our goal is to derive an amplitude equation describing the wave motion at the interface with a 

characteristic spatial scale of the order of the core-region radius. Therefore, in accordance with the long-wave 
approximation of the boundary-layer theory, we introduce a new radial coordinate into the film: r = 1 + e -  ey, 
0~<y~<l .  

Let us determine the orders of some parameters of the problem. Let 

We = O(e-1),  P2/Pl = O(1), m =/z2// t l  = O(1), q = k2/kx = 0(~).  

We consider the development of perturbations at a stage at which the deviation of the interface F from 
its unperturbed state has the order 6(1 = 6rl(z,t)) , with 6 << ~. An equation describing the weakly nonlinear 
stage of evolution of the interface is derived on the basis of the kinematic conditiota (2.10). This condition is 
a prototype of the amplitude equation, whose final form depends on the adopted assumptions on the physical 
organization of fluctuation development. We do not deal with a linear analysis of stability, assuming that the 
final perturbations appear in a definite way in the system at a certain stage (for example, they are introduced 
directly from the outside). 

Having obtained the asymptotic linear problem, whose solution is expressed in terms of functionals 
of the function ,7, we reduce the initial system (2.1)-(2.9). We then use the solution obtained by replacing 
the velocity components appearing in the reduced kinematic condition (2.10) by their expressions in terms 
of ,7. In the coordinate system moving along the z axis with velocity W02(1), the influence of the basic flow 
[W02(1 + l)] on the form of the kinematic condition leads to the occurrence of the quadratic nonlinearity in 
the expansion of (2.10) at the unperturbed boundary. 

Let us consider the following variant of the development of fluctuations. In the boundary-layer 
approximation, with a sufficiently strong surface tension, a deformation of the interface usually induces 
a large pressure perturbation in the thin layer. This pressure perturbation prescribes the scales of the 
other hydrodynamic variables, generating, in particular, a semiparabolic profile of longitudinal-velocity 
perturbation. We assume that 

p2 ~ (We/Re:)6 [(Re:p2 "-, W e ( / + / , , ) l ;  (3.1) 

W2 '~ Re2 e2p2 "~ We s26 [from the Navier-Stokes equation (2.2)]; (3.2) 

u2 "~ ~w2 "-" We ~36 [from the continuity equation (2.3)]. (3.3) 

Owing to the viscous stratification, W02(1 + 6r/) - W0:(1 + ~fr/) = 2(1 - 1/m),Sr l + O(die) = O(df), and, 
since w2 < O(di), from the condition of velocity continuity at the interface we obtain 

w, = O(~). (3.4) 
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It then follows from (2.2) and (2.3) that  

Ul = 0(6) ;  (3.5) 

p, = O(6/Rel). (3.6) 

In accordance with (3.2)-(3.5), we have the following estimates for the radial derivatives on the right- 
hand side of (2.9): 

w,(L)  = 0(6);  (3.7) 

O(We ~2 6) < u,.(L) < O(6), (3.8) 

and, according to (2.11), 

Wor(L) = O(1). (3.9) 

Let us consider a si tuation in which in the process of energy transfer [Eq. (2.9)] small variations in the 
internal energy of the interface F, which are associated with variations in the area of this interface surface, 
are linked with the tempera ture  perturbat ion in the film. 

We first note that ,  in accordance with (2.11), O02(1) = T + O(e), where T = Os2 - {(a + 1)(a 2 + 1) + 
4(m - 1)) /{(a  + 1)(a 2 + 1) + qm + 4(m - 1)}, and assume that  T = O(1). Then,  taking into account the 
estimates (3.7)-(3.9), we assume that  

82 "~ Es TWor(1)~6/q ,',, Es 6. (3.10) 

We consider the case Mn -~ We e/Es  to relate the quanti ty 82 to hydrodynamic perturbat ions [in this 
case, by condition (2.8)] and, hence, to make it possible for the dynamics of tempera ture  perturbations to 
influence the evolution of the interface F. 

Since q = O(~), we have, owing to (2.11), O01r = O(1) and 6)02r = O(e -1 ) .  Therefore, (901(1 + 67) - 
6)02(1 + 6,7) = O(6/e).  If the orders of the parameters are such that  02 > O(6/e) [for this, we can require 
Es > O(e-1)], then,  owing to the temperature  continuity at the interface, the est imate 

01 ~ 02 (3.11) 

should be valid. In this case, the temperature  perturbations in the film and in the core are in the main order 
in condition (2.9), which implies that  the thermodynamic processes in both areas are interrelated and offers 
the possibility of nonlocal terms occurring in the ampli tude equation. 

For the radial derivatives on the right-hand side of (2.8), we have 

O(Es 6) < O,.(L) < O(Es 6C-1); (3.12) 

0(1) < 6)or(L) <= O(~-I). (3.13) 

As in [2], we can consider a situation in which hydrodynamic perturbations of the core and in the thin 
layer are in the main order in (2.8). The terms (m/e)w2~, and Wlr are the dominant  contributions of the film 
and of the core, respectively. Owing to the condition We = O(e-1),  these quantities have the same order of 
magnitude. 

Let us turn our at tent ion to the kinematic condition. In the coordinate system moving along the z axis 
with velocity W02(1), relation (2.10) takes the form l~ - ( 2 / m ) l l z  = u2(y = 1) (we omit higher-order terms). 
From this, we determine the t ime scale for the development of perturbations and also a relation between the 
parameters 6 and e for the evolution of the interface to be related to the processes inside the physical system 
considered: 

6 ,,, We e3. (3.14) 

The t ime dependence of the processes of perturbations evolution in the new system of coordinates is 
expressed in terms of r = 6t. 
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4. De r iva t ion  of an In tegro-Dif fe ren t ia l  A m p l i t u d e  Equa t ion .  Let 

Rei = O(e), Pel = O(e-1), Pe2 = O(1), We = O(e-1), 

Es = O(e-3/2), Mn = O(e3/2), Dis/~< O(e-2). (4.1) 

It follows from (3.1)-(3.6), (3.10), (3.11), and (3.14) that the asymptotic representation for the 
quantities takes the form 

U 2 = s 4 u + O ( e S ) ,  W 2 = W 0 2 + s 3 w + O ( e 4 ) ,  P 2 = P 0 2 + p + O ( e ) ,  

02  = 002 n t" e l /20  -[" O(e 3/2) in the film; 

U1 = e2ue -{- . . . ,  W1 : WOl + e2wc d- . . . ,  /91 = POl + epc + . . . ,  

Ox = O01 +el/20c +.. .  in the core. (4.2) 

Substituting (4.2) into (2.1)-(2.10) and taking into account (3.7)-(3.9), (3.12), and (3.13), we obtain 
the following problem for the main-order terms: 
- -  in the thin layer 

py = 0; (4.3) 

-p, + (m/]~,)wyy = 0; (4.4) 

- u y  + w~ = 0; (4.5) 

0~y=0  for 0 < y < l ;  (4.6) 

u = w = O = O  for y = 0 ;  (4.7) 

the conditions at the interface for r = 1 and y = 1 have the form 

p = ( W ~ / ~ l ) ( ' / +  ' /~);  (4.8) 

ucz(1) q- Wc,(1) + mwy(1) ---- M-'nOz(1); (4.9) 

Oct(l) -{- ~0v(l ) = -E,/z, (4.10) 

where E = E--~TW0r(1) [the value of T was given in the derivation of (3.10)]; 

ue(1) = 0, Wc(1) = 2(1 - l/m),/; (4.11) 

0c(1) = 0(1); (4.12) 

'/r - (2/m)'/'/~ = u(1); (4.13) 

- -  in the core 

~ - c  - (1/r2)~c = ~ l p . ;  (4.14) 

Awc= Relpcz; (4.15) 

Ucr + (llr)uc + Wcz = 0; (4.16) 

A 6 c = 0  for 0 < r < l ;  (4.17) 

uc, we, 6c are bounded fort  = 0. (4.18) 

The corresponding parameters, each divided by its order, are denoted by ~'s, M-n, We, ]~1, and ~. 
Problem (4.3)-(4.7) has the following solution: 

p=p(z,r), w=(~x/m)(pzy2/2+A(z,r)y),  u=(R-el/m)(pzzy3/6+Azy2/2), O=B(z,r)y. (4.19) 

Here A(z, r), B(z, r), and p(z, r) are unknown functions that should be found from the boundary conditions. 
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We hence obtain u(y = 1) = (wyz(y = 1))/2 - p,=R-'el/(3m), and expressing wy(y = 1) in terms of 
(4.9), we have 

u(y = 1) = (]Vi~B,z - ucz~(r = 1) - wcr~(r = 1))/(2m) - pzzR'el/(3m). (4.20) 
O0 

Using the Fourier transform F(Oc) = f Oc(r, z, r ) exp( - i az )  dz, we find from (4.17) with allowance 
- - C O  

for (4.18) that F(Oc) = C(a)Io(ar) in the Fourier space. In what follows, I0 and I1 are the modified Bessel 
functions of the zeroth and first order, respectively. 

Let us determine the desired functions B(z, r) and C(a) from conditions (4.10) and (4.12), which can 
be written as C(a)al l (a)  + ~F(B) = -Ef(r}z) and C(a)Io(a) = F(B).  Then 

B(z, r) = - E f - l  { f(rl~)Io(a)/(all(a) + ~I0(a))}. (4.21) 

The hydrodynamic part of the problem in the core is solved similarly, but in a more complicated 
way (see [2]). If we introduce the stream function, find its Fourier image up to unknown functions, define 
these functions using the boundary conditions, and return by means of the inverse Fourier transform to the 
configuration space, we can find {wcr~(r = 1) + uc~z(r = 1)} in (4.20). 

Substituting the previously found expression (see formulas (26) and (27) in [2]), and also p(z, r) from 
(4.8) and B(z, r) from (4.21) into (4.20), we obtain from (4.13) that the required amplitude equation has the 
form 

CO OO 

r/r+ Mlrly, + M2(rlz, + r}****) + / T(a) / z}r162162 
- -OO - - C O  

OO OO 

+ f go(a) / rl(r e x p ( i a ( z - r  , (4.22) 
~ 0 0  ~ 0 0  

where 

1 a210( ) 
M1 = - 2 / m ,  11/12 = W~/3m, T(a) = -~ ' ~  E 

 Ii(a) +  I0(a)' 

a(a) = 1 -  112( ) - alo2(a) + 

Remark 1. The case Rei1= 0(1) is considered similarly. Only are Eqs. (4.14) and (4.15) changed in 
problem (4.3)-(4.18). The amplitude equation in this case has the form (4.22) and (4.23), and only the kernel 
G(a) is determined by another formula given in [2]. 

R e m a r k  2. For O(e -1) < We < O(r the reduced problem (4.3)-(4.18) retains its form; only the 
terms ucz and we, in (4.9) are omitted, and the second integral term with kernel iG(a) in (4.22) vanishes. In 
other respects, the amplitude equation is not changed. 

5. Der ivat ion of an A m p l i t u d e  Equat ion  in the  Absence of the  Effect of Pe r tu rba t ions  in 
the  Core on the  Evolu t ion  of the  Interface.  Let 

P2/Pl = 0(1), q = 0(1), Rei = 0(r or Rei = 0(1), 

Pe i=O(1) ,  O(c - 2 ) < w e < O ( e - ' ) ,  Mn=O(1) .  

The considerations of Sec. 3 can be repeated almost word for word, with a few exceptions. Estimate 
(3.10) now has the form 02 "~ Es 6~. The temperature and hydrodynamic perturbations are related by 
condition (2.8), with Es ,,, We. 

In the case considered, O01(1 + 6r/) - O02(1 + 6r/) = 0(6) and 02 > 0(6) and, therefore, we assume 
that 01 "~ 02. 

Instead of (3.7), (3.8), (3.14), and (3.15), we obtain 

0(5) < wr(L) < O(We 6~), O(We 6~ 2) < ur(L) < O(8), O(Es 8~) < 0,(L) < O(Es 6), O0,(L) = O(1). 

166 



The initial system (2.1)-(2.10) can then be simplified to the following reduced problem. Conditions 
(4.3)-(4.7) are satisfied in the thin layer. The conditions 

p = (W'~/R-'~I)(r/+ r/,z), mwy(1) = Mn ~,(1), 

Uc(1) = O, wc(1) = 2(1 - 1/rn)~, ec(1) = 0(1), 

are satisfied at the interface for y = 1. 

qOy(1) = - E  ~,, 

= u ( 1 )  
(5.1) 

To find the function u(y = 1), it is necessary to know the dynamics only in the film, and, therefore, we 
do not formulate the problem in the core. By determining the required functions A(z, r), B(z, r), and p(z, r) 
in (4.19) from boundary conditions (5.1) and substituting the quantity u(y = 1) expressed as a functional 
of ~(z, r) into the reduced kinematic condition, we obtain that in this approximation the behavior of the 
interface is described by the equation 

~r+Ml~z+M2(~zz+rlzzzz)+M3rlzzz=O [Ml=-2 /m ,  M2=W~/3m, M3=MnE/2mq]. (5.2) 

R e m a r k  3. The reduction method is apparently applicable also to the flow in a cylindrical pipe of 
circular cross section, which has a similar configuration. 

6. On Poss ib le  Consequences  of t he  T h e r m o d y n a m i c  Effects  Cons ide r ed .  The linear 
dispersion relation for the harmonics r /=  exp{iaz + AT} takes the form A = M 2 ( o t  2 - a 4 )  - iG(a) - iaT(a) 
for Eq. (4.22) and A = M2(a 2 - a 4) + iM3a 3 for Eq. (5.2). Thus, the effect of temperature perturbations in 
both cases is of a dispersive character. 

It is known that dispersion effects can have a regularizing influence on the turbulent behavior of dynamic 
systems. For example, it has been shown in the numerical calculations of [6] that the chaotic character of the 
solution of the Kuramoto-Sivashinskii equation (1.1) changes abruptly when a term of the form M3gzzz with 
the corresponding value of the coefficient M3 is added to (1.1). The solutions become similar to a chain of 
impulses with equal amplitudes, which move as a whole, or to a sequence of solitary waves. 

In accordance with the numerical calculations carried out in [2], the nonlocal term with the kernel 
iG(a), which is of a dispersive nature, also introduces some order into the chaotic character of the solutions of 
the Kuramoto-Sivashinskii equations. For example, motions with two characteristic spatial scales can occur: 
the periodic profile represents a long high crest with a small "hill" on it. The kernels iG(a) and T(a) are 
similar in structure, and the presence in the amplitude equation (4.22) of the nonlocal integral term with 
kernel T(a) due to thermodynamic effects that are active within the framework of the considered mechanism 
of perturbation development will probably yield the same results. 

Equations (4.22) and (5.2) differ from the Kuramoto-Sivashinskii equation (1.1) only by the presence 
of terms of a dispersive character. The real parts of the dispersion relations for these equations are the same. 
This means that the energy of unstable long waves is transferred by the quadratically nonlinear term to 
attenuating short-wave perturbations. Such an organization ensures the boundedness of the solutions of the 
Kuramoto-Sivashinskii equation [7, 8]. This mechanism is very likely to lead to a similar boundedness of the 
solutions of Eqs. (4.22) and (5.2) as well, because the effects occurring in them, which are new in comparison 
with (1.1), are of a purely dispersive character for small perturbations. 

These arguments and the numerical calculations for Eq. (5.2) of [6] and Eq. (4.22) with a single integral 
term with kernel iG(a) [2], which testify to the boundedness of the solutions found in space and time, along 
with the initial assumption that /~ << ~, allow us to expect that the thin layer in the cases considered is 
stabilized long before the perturbation amplitude of the interface becomes comparable with the thickness of 
this layer and, consequently, the film does not break up. 

The specific character of possible secondary regimes described by the amplitude equations obtained 
requires further investigation. 

Some results of this paper were presented at the 10th Winter School on Fluid Dynamics held in Perm' 
in 1995. 

The author would like to thank V. K. Andreev for comments. 
This work was supported by the Russian Foundation for Fundamental Research (Grant 95-01-00340a). 
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